报告题目:Testing for structural change of predictive regression model to threshold predictive regression model
主讲人:朱复康教授(吉林大学)
时间:2022年7月5日(周二)10:00 a.m.
形式:线上讲座(腾讯会议)
会议ID:183-360-777
主办单位:统计与数学学院
摘要:This article investigates two test statistics for testing structural changes and thresholds in predictive regression models. The generalized likelihood ratio (GLR) test is proposed for the stationary predictor and the generalized F test is suggested for the persistent predictor. Under the null hypothesis of no structural change and threshold, it is shown that the GLR test statistic converges to a function of a centered Gaussian process, and the generalized F test statistic converges to a function of Brownian motions. A Bootstrap method is proposed to obtain the critical values of test statistics. Simulation studies and a real example are given to assess the performances of the proposed tests.
主讲人简介:
朱复康,吉林大学数学学院教授、博士生导师。吉林国家应用数学中心副主任、吉林大学数学学院院长助理、概率统计与数据科学系主任。2008年博士毕业,2013年被破格聘为教授。主要从事时间序列分析和金融统计的研究,已经在Annals of Applied Statistics、Journal of Business & Economic Statistics、Statistica Sinica等期刊上发表论文50余篇。作为负责人获得省部级以上科研项目10项,其中国家自然科学基金项目4项。曾获得教育部自然科学奖二等奖、吉林省科学技术奖二等奖等科研奖励。现任中国数学会概率统计学会、中国现场统计研究会等学会的理事或常务理事,是JRSSB、JBES、AoAS等60余个SCI期刊的匿名审稿人。